

User's manual FLIR A500-EST & FLIR A700-EST

Important note

Before operating the device, you must read, understand, and follow all instructions, warnings, cautions, and legal disclaimers.

Důležitá poznámka

Před použitím zařízení si přečtěte veškeré pokyny, upozornění, varování a vyvázání se ze záruky, ujistěte se, že jim rozumíte, a řiďte se jimi.

Vigtig meddelelse

Før du betjener enheden, skal du du læse, forstå og følge alle anvisninger, advarsler, sikkerhedsforanstaltninger og ansvarsfraskrivelser.

Wichtiger Hinweis

Bevor Sie das Gerät in Betrieb nehmen, lesen, verstehen und befolgen Sie unbedingt alle Anweisungen, Warnungen, Vorsichtshinweise und Haftungsausschlüsse

Σημαντική σημείωση

Πριν από τη λειτουργία της συσκευής, πρέπει να διαβάσετε, να κατανοήσετε και να ακολουθήσετε όλες τις οδηγίες, προειδοποιήσεις, προφυλάξεις και νομικές αποποιήσεις.

Nota importante

Antes de usar el dispositivo, debe leer, comprender y seguir toda la información sobre instrucciones, advertencias, precauciones y renuncias de responsabilidad.

Tärkeä huomautus

Ennen laitteen käyttämistä on luettava ja ymmärrettävä kaikki ohjeet, vakavat varoitukset, varoitukset ja lakitiedotteet sekä noudatettava niitä.

Remarque importante

Avant d'utiliser l'appareil, vous devez lire, comprendre et suivre l'ensemble des instructions, avertissements, mises en garde et clauses légales de non-responsabilité.

Fontos megjegyzés

Az eszköz használata előtt figyelmesen olvassa el és tartsa be az összes utasítást, figyelmeztetést, óvintézkedést és jogi nyilatkozatot.

Nota importante

Prima di utilizzare il dispositivo, è importante leggere, capire e seguire tutte le istruzioni, avvertenze, precauzioni ed esclusioni di responsabilità legali.

重要な注意

デバイスをご使用になる前に、あらゆる指示、警告、注意事項、および免責条項をお読み頂き、その内容を理解して従ってくだ さい。

중요한 참고 사항

장치를 작동하기 전에 반드시 다음의 사용 설명서와 경고, 주의사항, 법적 책임제한을 읽고 이해하며 따라야 합니다.

Viktig

Før du bruker enheten, må du lese, forstå og følge instruksjoner, advarsler og informasjon om ansvarsfraskrivelse.

Belangrijke opmerking

Zorg ervoor dat u, voordat u het apparaat gaat gebruiken, alle instructies, waarschuwingen en juridische informatie hebt doorgelezen en begrepen, en dat u deze opvolgt en in acht neemt.

Ważna uwaga

Przed rozpoczęciem korzystania z urządzenia należy koniecznie zapoznać się z wszystkimi instrukcjami, ostrzeżeniami, przestrogami i uwagami prawnymi. Należy zawsze postępować zgodnie z zaleceniami tam zawartymi.

Nota importante

Antes de utilizar o dispositivo, deverá proceder à leitura e compreensão de todos os avisos, precauções, instruções e isenções de responsabilidade legal e assegurar-se do seu cumprimento.

Важное примечание

До того, как пользоваться устройством, вам необходимо прочитать и понять все предупреждения, предостережения и юридические ограничения ответственности и следовать им.

Viktig information

Innan du använder enheten måste du läsa, förstå och följa alla anvisningar, varningar, försiktighetsåtgärder och ansvarsfriskrivningar.

Önemli not

Cihazı çalıştırmadan önce tüm talimatları, uyarıları, ikazları ve yasal açıklamaları okumalı, anlamalı ve bunlara uymalısınız.

重要注意事项

在操作设备之前,您必须阅读、理解并遵循所有说明、警告、注意事项和法律免责声明。

重要注意事項

操作裝置之前,您務必閱讀、了解並遵循所有說明、警告、注意事項與法律免責聲明。

Table of contents

1	Disclaimers1				
	1.1	Legal disclaimer	. 1		
	1.2	U.S. Government Regulations			
	1.3	Patents			
	1.4	Quality assurance	. 1		
	1.5	Third-party licenses	. 1		
	1.6	Usage statistics			
	1.7	Copyright			
2	Safety	information	.2		
3	Notice to user				
Ū	3.1	Calibration			
	3.2	Accuracy			
	3.3	Online documentation			
	3.4	Important note about this manual4			
	3.5	Note about authoritative versions			
	3.6	Training			
	3.7	Disposal of electronic waste			
4	Customer help				
4	4.1	•			
	4.2	General			
	4.2	Downloads			
_					
5	FLIR's Partner Network				
6		iction			
	6.1	FLIR EST Thermal Screening Solutions			
7	Camera	ra parts9			
8	Camera installation				
	8.1	Equipment	10		
	8.2	Install the FLIR IP Config software			
	8.3	Power the camera10			
	8.4	Open the camera web interface10			
	8.5	Set a static IP address			
9	Mecha	nical installation	12		
10	Screen	ing station	13		
	10.1	Overview			
	10.2	Typical setup			
	10.3	Setup guide			
11	RTSP S	Streams			
12		a web interface			
12	12.1	Supported browsers			
	12.1	Login			
	12.3	Screening tab			
	12.0	12.3.1 Screening mode			
	12.4	Camera tab			
		12.4.1 Working with measurement tools			
		12.4.2 Working with alarms			
		12.4.3 Changing object parameters			
		12.4.4 Working with image modes			
		12.4.5 Colorizing the image			
		12.4.6 Auto-adjust region			
		12.4.7 Calibrating the camera			
		12.4.8 Using the camera lamp			
		12.4.9 Adjusting the temperature scale			
		12.4.10 Flipping the image			

Table of contents

		12.4.11 Full screen view	30		
		12.4.12 Saving a snapshot	30		
		12.4.13 Pausing the live image stream	30		
		12.4.14 Hiding the overlay graphics	30		
		12.4.15 Camera presets			
	12.5	Administration tab	31		
		12.5.1 Firewall			
		12.5.2 SSL certificates	31		
		12.5.3 Services			
		12.5.4 Web protocols			
		12.5.5 User management			
		12.5.6 Regional settings			
		12.5.7 Network settings			
	40.0	12.5.8 System and firmware			
	12.6	Settings tab			
		12.6.1 General settings			
		12.6.2 Alarm recipients			
		12.6.3 Scheduler			
		12.6.4 MQTT			
		12.6.5 Modbus			
	12.7	Library tab			
	12.7	12.7.1 Managing images			
		12.7.2 Managing videos			
		12.7.3 Managing logs			
13	Din oc	Pin configurations			
13	13.1	Ethernet connector and cable			
	13.2	Power/Digital I/O connector and cable			
14		les connection board			
'-	14.1	Connection examples			
15		are supporting FLIR A500–EST/FLIR A700–EST cameras			
		anical drawings			
16		-			
17		eclaration of conformity			
18		ator LEDs and factory reset button			
	18.1	Power/error indicator LED and factory reset button			
	18.2	Power/error indicator LED and power modes			
	18.3	Ethernet communication indicator LED			
19		ing the camera			
	19.1	Camera housing, cables, and other items			
		19.1.1 Liquids			
		19.1.2 Equipment			
		19.1.3 Procedure			
	19.2	Infrared lens			
		19.2.1 Liquids			
		19.2.2 Equipment			
		19.2.3 Procedure			
20		t FLIR Systems			
	20.1	More than just an infrared camera			
	20.2	Sharing our knowledge			
	20.3	Supporting our customers	60		

Disclaimers

1.1 Legal disclaimer

For warranty terms, refer to https://www.flir.com/warranty.

1.2 U.S. Government Regulations

This product may be subject to U.S. Export Regulations. Send any inquiries to export-questions@flir.com.

1.3 Patents

This product is protected by patents, design patents, patents pending, or design patents pending. Refer to the FLIR Systems' patent registry:

https://www.flir.com/patentnotices

1.4 Quality assurance

The Quality Management System under which these products are developed and manufactured has been certified in accordance with the ISO 9001 standard.

FLIR Systems is committed to a policy of continuous development; therefore we reserve the right to make changes and improvements on any of the products without prior notice.

1.5 Third-party licenses

Information about third-party licenses is available in the user interface of the product.

1.6 Usage statistics

FLIR Systems reserves the right to gather anonymous usage statistics to help maintain and improve the quality of our software and services.

1.7 Copyright

© 2020 FLIR Systems, Inc. All rights reserved worldwide. No parts of the software including source code may be reproduced, transmitted, transcribed or translated into any language or computer language in any form or by any means, electronic, magnetic, optical, manual or otherwise, without the prior written permission of FLIR systems.

The documentation must not, in whole or part, be copied, photocopied, reproduced, translated or transmitted to any electronic medium or machine readable form without prior consent, in writing, from FLIR systems.

Names and marks appearing on the products herein are either registered trademarks or trademarks of FLIR systems and/or its subsidiaries. All other trademarks, trade names or company names referenced herein are used for identification only and are the property of their respective owners.

Safety information

WARNING

Applicability: Class B digital devices.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- · Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

WARNING

Applicability: Digital devices subject to 15.19/RSS-GEN.

NOTICE: This device complies with Part 15 of the FCC Rules and with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1. this device may not cause harmful interference, and
- this device must accept any interference received, including interference that may cause undesired operation.

WARNING

Applicability: Digital devices subject to 15.21.

NOTICE: Changes or modifications made to this equipment not expressly approved by FLIR Systems may void the FCC authorization to operate this equipment.

WARNING

Applicability: Digital devices subject to 2.1091/2.1093/KDB 447498/RSS-102.

Radiofrequency radiation exposure Information: The radiated output power of the device is far below the FCC radio frequency exposure limits. Nevertheless, the device should be used in such a manner that the potential for human contact during normal operation is minimized.

WARNING

Do not use screws that are too long. The depth of the holes in the camera is 4.0 mm (0.16 in) and 5.5 mm (0.22 in), see 16 *Mechanical drawings*, page 50. Damage to the camera will occur if you use screws that are too long.

CAUTION

Do not point the infrared camera (with or without the lens cover) at strong energy sources, for example, devices that cause laser radiation, or the sun. This can have an unwanted effect on the accuracy of the camera. It can also cause damage to the detector in the camera.

CAUTION

Do not use the camera in ambient temperatures higher than +40°C (+122°F), unless other information is specified in the user documentation or technical data. High temperatures can cause damage to the camera.

CAUTION

The surface of the camera becomes hot. Use protective equipment when handling the camera in ambient temperatures higher than $+40^{\circ}$ C (+122°F).

CAUTION

Do not apply solvents or equivalent liquids to the camera, the cables, or other items. For cleaning, refer to 19 *Cleaning the camera*.

CAUTION

Do not use too much force when you clean the infrared lens. Damage to the infrared lens or to the anti-reflective coating of the lens can occur. For cleaning, refer to 19 *Cleaning the camera*.

CAUTION

Applicability: Cameras where you can remove the lens and expose the infrared detector.

Do not use compressed air of lower quality than "Process air" when you remove dust from the detector. Air of lower quality than "Process air" can contain high levels of contaminants. Damage to the detector can occur.

CAUTION

Applicability: Cameras with an automatic shutter that can be disabled.

Do not disable the automatic shutter in the camera for a long time period (a maximum of 30 minutes is typical). This can have an unwanted effect on the accuracy of the camera.

CAUTION

Do not look into the camera torch LED when you operate it. Injury to your eyes and skin can occur.

Note The encapsulation rating is only applicable when all the openings on the camera are sealed with their correct covers, hatches, or caps. This includes the compartments for data storage, batteries, and connectors.

Notice to user

3.1 Calibration

FLIR Systems recommends that you verify your calibration yearly. You can verify the calibration yourself or with the help of a FLIR Systems Partner. If preferred, FLIR Systems offers a calibration, adjustment, and general maintenance service.

3.2 Accuracy

For very accurate results, we recommend that you wait 5 minutes after you have started the camera before measuring a temperature.

3.3 Online documentation

The FLIR EST Thermal Screening documentation is continuously updated and published online.

To access the latest user manuals, product information, and other FLIR EST Thermal Screening resources, go to: http://support.flir.com/resources/est.

To access the latest FLIR A500–EST/FLIR A700–EST user manual, go to: http://support.flir.com/resources/ds6g.

3.4 Important note about this manual

FLIR Systems issues generic manuals that cover several cameras within a model line.

This means that this manual may contain descriptions and explanations that do not apply to your particular camera model.

3.5 Note about authoritative versions

The authoritative version of this publication is English. In the event of divergences due to translation errors, the English text has precedence.

Any late changes are first implemented in English.

3.6 Training

For training resources and courses, go to http://www.flir.com/support-center/training.

3.7 Disposal of electronic waste

Electrical and electronic equipment (EEE) contains materials, components and substances that may be hazardous and present a risk to human health and the environment when waste electrical and electronic equipment (WEEE) is not handled correctly.

Equipment marked with the below crossed-out wheeled bin is electrical and electronic equipment. The crossed-out wheeled bin symbol indicates that waste electrical and electronic equipment should not be discarded together with unseparated household waste, but must be collected separately.

For this purpose all local authorities have established collection schemes under which residents can dispose waste electrical and electronic equipment at a recycling centre or other collection points, or WEEE will be collected directly from households. More detailed information is available from the technical administration of the relevant local authority.

Customer help

4.1 General

For customer help, visit:

http://support.flir.com

4.2 Submitting a question

To submit a question to the customer help team, you must be a registered user. It only takes a few minutes to register online. If you only want to search the knowledgebase for existing questions and answers, you do not need to be a registered user.

When you want to submit a question, make sure that you have the following information to hand:

- · The camera model
- The camera serial number
- The communication protocol, or method, between the camera and your device (e.g., SD card reader, HDMI, Ethernet, USB, or FireWire)
- Device type (PC/Mac/iPhone/iPad/Android device, etc.)
- Version of any programs from FLIR Systems
- · Full name, publication number, and revision number of the manual

4.3 Downloads

On the customer help site you can also download the following, when applicable for the product:

- Firmware updates for your infrared camera.
- Program updates for your PC/Mac software.
- Freeware and evaluation versions of PC/Mac software.
- User documentation for current, obsolete, and historical products.
- Mechanical drawings (in *.dxf and *.pdf format).
- CAD data models (in *.stp format).
- · Application examples.
- · Technical datasheets.

FLIR's Partner Network

We welcome you to join our Partner Network at our Customer Support site!

The Partner Network is located on the **Partners** tab at http://support.flir.com (partner registration needed) and is specifically aimed at distributors and system integrators.

Once your company has been approved, you can do one or more of the following, from a single location:

- Ask questions about a product or service.
- Search for existing answers about a product or service.
- Download manuals, software, and datasheets.
- Report quality issues.
- · Request eRMAs.
- · Download firmware updates.
- · Send product feedback.
- See order status in SAP.
- Read product bulletins.

Introduction

The FLIR A500–EST/FLIR A700–EST is a thermal cameras with functionality and connectivity aimed towards screening of individuals for detection of elevated skin temperatures. The camera can be connected to an external FLIR EST Thermal Screening software. It also has built in FLIR EST Screening functionality for basic screening applications.

6.1 FLIR EST Thermal Screening Solutions

FLIR Systems provides different screening solutions for detection of elevated skin temperatures using thermal cameras.

No thermal camera can detect or diagnose a virus or infection, but with a FLIR EST Thermal Screening Solution it is possible to identify individuals with skin temperatures that are above a specified threshold. An elevated temperature may be one indicator that the person being screened may have a fever.

The FLIR EST Thermal Screening system measures the temperature of the skin around the tear duct. An alarm will trigger when the measured temperature is higher than the sum of a reference temperature and a specified allowed deviation.

To improve the accuracy of the screening results, it is important to set up the screening station correctly.

Since the FLIR EST Thermal Screening systems measure the surface temperature of the tear duct, the measured temperatures are lower than the ones you may be used to in a fever context. Note that the FLIR EST Thermal Screening systems cannot measure core body temperature or diagnose a fever.

It is up to you to set up a suitable core body temperature measuring process, and a process for those individuals where the system has indicated an elevated skin temperature in accordance with applicable local data protection, employment, and health & safety laws.

Camera parts

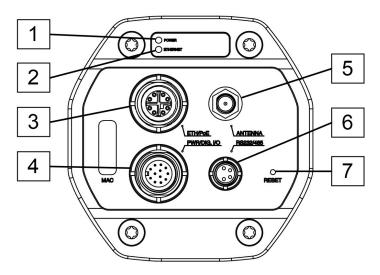


Figure 7.1 View from the rear

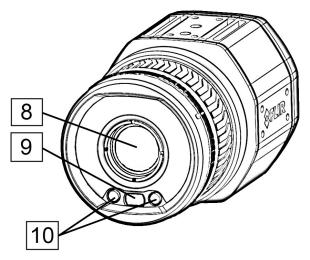


Figure 7.2 View from the front

- 1. Power/error indicator LED (blue/red).
- 2. Ethernet communication indicator LED (green).
- 3. Ethernet/PoE connector, X-coded.
- 4. Power-I/O connector, A-coded.
- 5. Antenna.
- 6. RS232/485 connector, A-coded.
- 7. Factory reset button.
- 8. Infrared sensor.
- 9. Visual camera.
- 10. LED lamps.

For details, see section 18 Indicator LEDs and factory reset button, page 56.

Camera installation

8.1 Equipment

To power the camera and for internet connection, the following equipment is needed:

Equipment provided with the camera:

- Ethernet cable M12 to RJ45F (0.3 m), P/N T911869ACC
- · Camera calibration certificate with login credentials

Standard equipment (not included):

- Standard Ethernet cables, 2 pieces
- Power over Ethernet (PoE) injector

8.2 Install the FLIR IP Config software

The FLIR IP Config is a computer software used to detect cameras in an IP network. The FLIR IP Config scans for cameras automatically and you can identify your camera by the MAC address printed on a label on the back of the camera.

To install the FLIR IP Config software on the computer, follow this procedure:

- 1. Go to https://flir.custhelp.com/.
- 2. In the search field, enter "FLIR IP Config" and then click the *Search* button. In the search results, click the *Download FLIR IP Config* link.
- 3. Download the latest version of FLIR IP Config (zip file).
- 4. Unzip the file and run the *.exe file.
- 5. Follow the instructions in the installation wizard.

8.3 Power the camera

You power the camera by connecting a Power over Ethernet (PoE) injector to the camera. The camera starts automatically when it is connected to power.

To power the camera, do the following:

- Connect the Ethernet cable (M12 to RJ45) to the Ethernet/PoE connector on the camera (Figure 7.1, item 3).
- 2. Connect a standard Ethernet cable to the Ethernet cable (M12 to RJ45).
- 3. Connect the other end of the Ethernet cable to the OUT port on the PoE injector.
- Connect a standard Ethernet cable from the IN port on the PoE injector to the computer.
- 5. Connect the PoE injector to a power outlet. The camera starts automatically.

8.4 Open the camera web interface

To open the camera web interface, do the following:

- 1. On the computer, start FLIR IP Config.
- The FLIR IP Config automatically scans for cameras. When a camera is detected, FLIR IP Config displays the IP address of the camera.
- 3. Do one of the following:
 - 3.1. Double-click on the camera in FLIR IP Config.
 - 3.2. Type the IP address of your camera into the address bar of a web browser. (For supported web browsers, see section 12.1 *Supported browsers*.)

This displays the login view.

4. Log in with the username *admin* and the default administrator password available on the camera calibration certificate. This displays the web interface of the camera.

8.5 Set a static IP address

It is recommended to set a static IP address for the camera. Otherwise the camera will get a new IP address each time the camera is restarted.

To set a static IP address, do the following:

- 1. In the camera web interface, go to the Administration tab and select Network settings.
- 2. Select the Manual configuration check box.
- 3. Enter valid network information in the *IP*, *Subnet mask*, and *Gateway* boxes.
- 4. Click *Apply* at the bottom of the page.

Note Make sure your settings are correct before saving them or the camera might not be reachable afterwards. If this occurs, you can use FLIR IP Config to locate the camera again.

Mechanical installation

The camera unit has been designed to allow it to be mounted in any position. It has mounting interfaces on all sides, but not on front or back. For details, see 16 *Mechanical drawings*, page 50.

WARNING

Do not use screws that are too long. Damage to the camera will occur if you use screws that are too long.

The camera generates a considerable amount of heat during operation. This is normal. In order to transfer this heat, it is recommended that the camera is mounted on a bracket or heat sink made of a material with a high capacity to transfer heat, e.g., aluminum. The use of a cooling bracket or a heat sink is also strongly recommended in order to minimize the temperature drift of the infrared detector in the camera.

For further information regarding mounting recommendations, contact FLIR Systems.

10.1 Overview

The screening station typically consists of a FLIR thermal camera, a FLIR EST Thermal Screening application (e.g. desktop software or camera mode), a clearly defined screening position, and a backdrop.

For improved measurement accuracy, it is important that the screened person is at the correct distance from the camera. The screening position indicates where the person shall stand for the screening.

A backdrop shall be placed behind the screening position. The backdrop is needed to prevent any disturbing reflections, people, and light in the background from reaching the camera.

The thermal camera measures the temperature at the tear duct of the screened person. The FLIR EST Thermal Screening application analyzes the measured temperature and displays a screening result.

10.2 Typical setup

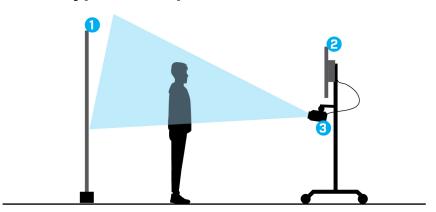


Figure 10.1 Typical FLIR EST Thermal Screening station

- 1. Backdrop preventing background disturbances.
- 2. Display facing the screened person.
- 3. FLIR thermal camera.

10.3 Setup guide

The setup of a screening station with a FLIR A500–EST/FLIR A700–EST camera includes the following main steps:

- 1. Choose the site for the screening station. Plan how the persons will flow into the screening station and out.
- 2. Make sure you have all the equipment and tools needed for the installation.
- 3. Power the camera and connect it to the IP network.
- 4. Install any FLIR EST Thermal Screening desktop software.
- 5. Place the camera, display, computer, and backdrop at the screening station.
- 6. Configure the camera and any FLIR EST Thermal Screening desktop software.
- 7. Make sure the camera setup can capture users with different heights.
- 8. Place information materials such as instruction roll-ups, queue indicator poles, and arrow stickers.
- 9. Test the setup. Adjust if needed.

The screening station setup depends on the FLIR EST Thermal Screening solution and which application (e.g. desktop software or camera mode) you use. For solution specific

setup, configuration, and operation instructions, refer to the FLIR EST Thermal Screening documentation, see section 3.3 $Online\ documentation$.

RTSP Streams

It is possible to establish streaming sessions with the FLIR A500–EST/FLIR A700–EST camera.

The following URLs can be used:

- rtsp://<IP>/avc?source=0
- rtsp://<IP>/mpeg4?source=0
- rtsp://<IP>/mjpg?source=0
- rtsp://<IP>/avc?source=1
- rtsp://<IP>/mpeg4?source=1
- rtsp://<IP>/mjpg?source=1

The section after <IP> refers to the encoding:

- /avc = H264 encoding
- /mpeg4 = MPEG4 encoding
- /mjpg = Motion JPEG encoding

The section after the encoding refers to the source, which can be either 0 or 1:

- ?source=0 will start a streaming session giving you the identical video as seen in the web interface. This can be IR, visual, MSX, or FSX, and the feed is 640 x 480 pixels. Add the &overlay=off argument in the URL to receive a feed without overlay.
- **?source=1** will start a streaming session giving you the uncropped visual image at 1280 x 960 pixels.

A radiometric 16-bit stream is also available for software supporting it.

12.1 Supported browsers

The camera web interface supports the following browsers and versions:

- · Google Chrome 77 and higher,
- · Microsoft Edge 17 and higher,
- · Mozilla Firefox 69 and higher.

Note Microsoft Internet Explorer is not supported.

12.2 Login

Log in to the camera web interface by using the IP address of your camera.

Follow this procedure:

- 1. Do one of the following:
 - a. Identify your camera by the MAC address (printed on the back of the camera) in FLIR IP Config, and then double-click it.
 - b. Type the IP address of your camera into the address bar of a web browser.

This displays the login view.

When logging in for the first time, log in with the username admin and the default administrator password provided by FLIR (available on the camera calibration certificate).

Note

- The users viewer and user are disabled by default, but can be enabled by an admin
 user
- It is possible for several users of the type viewer and user to log in to the camera at
 the same time. Any changes to the settings and adjustments to an image made by
 one user will be seen by the other logged in users.
- If you are logged in as an admin user, you will be logged out if another admin logs in.

12.3 Screening tab

Note The *Screening* tab is available when the *Screening* mode is enabled on the *Settings > Screening* page.

This image shows what the camera web interface looks like when the *Screening* mode is enabled.

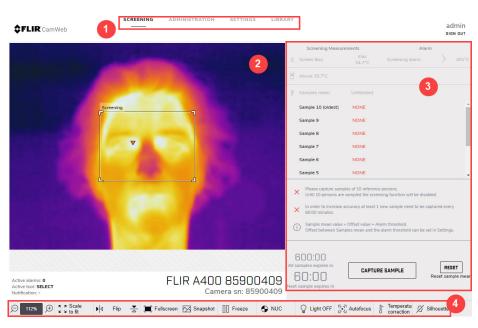


Figure 12.1 Screening tab

1. Tabs

Available tabs depend on user type;

- An admin sees the Screening, Administration, Settings, and Library tabs.
- A user sees the Screening, Settings, and Library tabs.
- A viewer sees the Screening tab.

2. Live image

The live image from the camera is displayed here. The camera detects and measures the temperature of the hottest spot within the *Screening* box. The size and position of the box can be changed by a drag-and-drop operation.

3. Screening pane

- Screen Box is the measured temperature.
- Screening alarm and Above show the alarm limit. The alarm limit is the sum of the Samples mean and the Screening offset value. The offset is set on the Settings > Screening page.
- Samples mean is the average temperature of the captured samples.
- The timers at the bottom shows the remaining time until the samples expire and you must capture new samples.
- Use the buttons to capture a sample or reset the average sample value.

4. Toolbar

The toolbar includes options for data presentation, calibration, and view modes.

12.3.1 Screening mode

The Screening mode is a function for detection of elevated skin temperatures.

In *Screening* mode, the camera measures the temperature of the skin around the tear duct. An alarm will trigger if the measured temperature is higher than the sum of a reference temperature average and an allowed deviation.

The reference temperature average is calculated based on measurement samples. The allowed deviation can be specified by an offset setting.

Before the screening can start, it is necessary to capture reference samples. To keep the sampled average up to date and secure a more accurate screening, new samples should be captured every now and then during the day. Samples are captured manually by clicking the *Capture sample* button.

For step-by-step instructions on how to set up, configure, and operate a screening station based on the *Screening* mode and a FLIR A500–EST or FLIR A700–EST camera, refer to the FLIR EST Thermal Screening documentation, see section 3.3 *Online documentation*.

12.4 Camera tab

The *Camera* tab is the factory default tab after logging in. Here it is possible to control the camera when it is used in a thermal monitoring application.

Note When the *Screening* mode is enabled, the *Screening* tab will be the default tab after logging in.

This image shows what the camera web interface looks like when you have logged in.

Note Depending on the size of the camera web interface window, the layout may be different.

Figure 12.2 Camera tab

1. Tabs

Available tabs depend on user type;

- An admin sees the Camera, Administration, Settings, and Library tabs.
- A user sees the Camera, Settings, and Library tabs.
- A viewer sees the Camera tab.

2. Live image

This is where the live image is presented of what the camera is currently targeting.

3. Toolbar

The toolbar options are grouped into the following categories;

- Measurement tools
- Data presentation modes
- Calibration tools
- View modes

4. Active measurements

Any measurement tools added to the image are displayed and managed from here.

12.4.1 Working with measurement tools

To measure a temperature, you can use one or more measurement tools, e.g., a spot, a box, or a delta. The measurement tools are labeled with a number for identification, according to the order of their creation. Added measurement tools show up in the *Active*

measurements section, where the they can be managed and where the measured temperatures are displayed.

12.4.1.1 Spot

A spot measurement tool shows the temperature of a specific spot in the image. It is possible to add up to ten spots.

To add a spot measurement tool, follow this procedure:

- 1. On the toolbar and in the *Measurement tools* section, click *Spot*.
- 2. In the image, click to insert the spot. The tool is labeled with a number, and it is also displayed in the *Active measurements* section.
- 3. To move the tool, click and hold the tool label in the image, and then move it into position.
- 4. To configure Settings for the tool, click next to the tool in the Active measurements section. This displays the Settings dialog box.
 - 4.1. To change the label of the tool, change the *Spot name*.
 - 4.2. Use the Autofocus range option to set autofocus on the tool.
 - 4.3. To set local parameters for the tool, see section 12.4.3.2 *Local parameters*, page 25.
- 5. To associate an alarm with the tool, see section 12.4.2 Working with alarms, page 22.
- 6. To remove the tool, click *Settings* next to the tool in the *Active measurements* section, and then click *Delete measurement*.

12.4.1.2 Box

A box measurement tool can show the minimum temperature, the maximum temperature, and the average temperature within a selected area of the image. It is possible to have up to ten boxes and masks at the same time.

To add a box measurement tool, follow this procedure:

- 1. On the toolbar and in the *Measurement tools* section, click *Box*.
- 2. In the image, click and then draw a box of a desired size. The tool is labeled with a number, and it is also displayed in the *Active measurements* section.
- 3. To move the tool, click and hold the tool label in the image, and then move it into position.
- 4. To resize the tool, click and hold one of the corners of the box in the image, and then move it to the desired size and shape.
- 5. To configure Settings for the tool, click next to the tool in the Active measurements section. This displays the Settings dialog box.
 - 5.1. To change the label of the tool, change the *Box name*.
 - 5.2. To select what measurement results to display, use the *Maximum*, *Minimum*, and *Average* check boxes.
 - 5.3. Use the *Local options* to set autofocus on the tool or adjust the temperature scale according to the temperatures of the tool. For more information, see section12.4.9 *Adjusting the temperature scale*, page 29.
 - 5.4. To display how much of the tool is covered by an isotherm, select the *Iso* check box. This setting is only applicable if you have selected a color alarm (isotherm). For more information, see section 12.4.5.2 *Isotherms*, page 27.
 - 5.5. To set local parameters for the tool, see section 12.4.3.2 *Local parameters*, page 25.
- 6. To associate an alarm with the tool, see section 12.4.2 Working with alarms, page 22.
- 7. To remove the tool, click *Settings* next to the tool in the *Active measurements* section, and then click *Delete measurement*.

12.4.1.3 Measurement mask

Use the measurement mask tool to capture and measure more complex shapes in the image, for example the outlines of an electrical switch. It is possible to have up to ten masks and boxes at the same time. Note that one mask can contain one or several different shapes. However, only one *Maximum*, one *Minimum*, and one *Average* temperature will be displayed for the mask.

To add a measurement mask tool, follow this procedure:

- 1. On the toolbar and in the *Measurement tools* section, click *Measurement mask*.
- 2. In the image, click to insert the starting point of the mask. Move the pointer and click to insert the next point. Continue until you have the captured the desired shape. Finish by clicking the starting point. The tool is labeled with a number, and it is also displayed in the *Active measurements* section.
- 3. To configure Settings for the tool, click next to the tool in the Active measurements section. This displays the Settings dialog box.
 - 3.1. To change the label of the tool, change the *Mask name*.
 - 3.2. To select what measurement results to display, use the *Maximum*, *Minimum*, and *Average* check boxes.
 - 3.3. Use the *Local options* to set autofocus on the tool or adjust the temperature scale according to the temperatures of the tool. For more information, see section 12.4.9 *Adjusting the temperature scale*, page 29.
 - 3.4. To display how much of the tool is covered by an isotherm, select the *Iso* check box. This setting is only applicable if you have selected a color alarm (isotherm). For more information, see section 12.4.5.2 *Isotherms*, page 27.
 - 3.5. To add another shape to the tool, click *Draw* and then draw the shape.
 - 3.6. To set local parameters for the tool, see section 12.4.3.2 *Local parameters*, page 25.
- 4. To associate an alarm with the tool, see section 12.4.2 Working with alarms, page 22.
- 5. To remove the tool, click *Settings* next to the tool in the *Active measurements* section, and then click *Delete measurement*.

12.4.1.4 Line

A line measurement tool shows the temperature along a specific line in the image. It is possible to add two lines.

To add a line measurement tool, follow this procedure:

- 1. On the toolbar and in the Measurement tools section, click Line.
- In the image, click a starting point and then draw the line to the desired length. The tool is labeled with a number, and it is also displayed in the Active measurements section.
- 3. To move the tool, click and hold the tool label in the image, and then move it into position.
- 4. To change the length of the tool, click one of the end points, and then move it to the desired length.
- 5. To configure Settings for the tool, click next to the tool in the Active measurements section. This displays the Settings dialog box.
 - 5.1. To change the label of the tool, change the *Line name*.
 - 5.2. To select what measurement results to display, use the *Maximum*, *Minimum*, and *Average* check boxes.
 - 5.3. Use the *Local options* to set autofocus on the tool or adjust the temperature scale according to the temperatures of the tool. For more information, see section 12.4.9 *Adjusting the temperature scale*, page 29.
 - 5.4. To set local parameters for the tool, see section 12.4.3.2 *Local parameters*, page 25.
 - 5.5. To add a temperature graph under the live image representing the tool, click the *Display temperature graph* check box.

- 6. To associate an alarm with the tool, see section 12.4.2 Working with alarms, page 22.
- 7. To remove the tool, click *Settings* next to the tool in the *Active measurements* section, and then click *Delete measurement*.

12.4.1.5 Polyline

A polyline measurement tool can show the minimum temperature, the maximum temperature, and the average temperature within a polyline drawn on the image. It is possible to add one polyline.

To add a polyline measurement tool, follow this procedure:

- 1. On the toolbar and in the Measurement tools section, click Polyline.
- In the image, click to insert the starting point of the polyline. Move the pointer and click to insert the next point. Continue until you have the desired shape. Finish by clicking *Confirm*. The tool is labeled with a number, and it is also displayed in the *Active measurements* section.
- 3. To move the tool, click and hold the tool label in the image, and then move it into position.
- 4. To configure Settings for the tool, click next to the tool in the Active measurements section. This displays the Settings dialog box.
 - 4.1. To change the label of the tool, change the *Polyline name*.
 - 4.2. To select what measurement results to display, use the *Maximum*, *Minimum*, and *Average* check boxes.
 - 4.3. Use the *Local options* to set autofocus on the tool or adjust the temperature scale according to the temperatures of the tool. For more information, see section 12.4.9 *Adjusting the temperature scale*, page 29.
 - 4.4. To set local parameters for the tool, see section 12.4.3.2 *Local parameters*, page 25.
 - 4.5. To add a temperature graph of the tool under the live image, click the *Display temperature graph* check box.
- 5. To associate an alarm with the tool, see section 12.4.2 Working with alarms, page 22.
- 6. To remove the tool, click *Settings* next to the tool in the *Active measurements* section, and then click *Delete measurement*.

12.4.1.6 Delta

Use the delta measurement tool to calculate the difference between two measurement results, or between a measurement result and a fixed temperature (reference temperature).

To add a delta measurement tool, follow this procedure:

- 1. On the toolbar and in the *Measurement tools* section, click *Delta*. The tool is displayed in the *Active measurements* section.
- 2. In the *Active measurements* section, click *Settings* . The *Delta settings* dialog box appears.
- 3. To change the label of the tool, change the *Delta name*.
- 4. In the *Variable 1* and *Variable 2* lists, select the measurement results you want to use in the calculation.
- 5. Click Save changes.

12.4.1.7 Reference temperature

The reference temperature can be used as a value which the measured values can be compared with.

To add a reference temperature, follow this procedure:

1. On the toolbar and in the *Measurement tools* section, click *Reference temperature*. The tool is displayed in the *Active measurements* section.

- 2. In the Active measurements section, click Settings . The Reference temperature dialog box appears.
- 3. To change the label, change the Reftemp name.
- 4. In the Value box, type the temperature to be used as reference.
- 5. Click Save changes.

12.4.2 Working with alarms

You can make the camera trigger an alarm when certain conditions are met. An alarm can be triggered by several different sources, such as a measurement result in the image, a digital input, or an internal temperature sensor.

When an alarm is triggered, the camera can perform one or more tasks, e.g. save an image or video sequence to camera memory, or send the image/video by e-mail to predefined recipients or to an FTP site. The camera can also further trigger a variety of external devices, using the digital output.

All active alarms are listed in the *Active alarms* section. A triggered alarm turns red in the *Active alarms* section. Also, the label of the measurement tool in the image turns red.

12.4.2.1 Setting an alarm based on a measurement result

To configure an alarm based on the measurement result from a spot, box, or delta measurement tool, follow this procedure:

- 1. In the *Active Measurements* section, click the plus sign under *Add alarm* next to the measurement result to be used for the alarm. The *Add alarm* dialog box appears.
- 2. In the Alarm label section, type an Alarm name.
- In the Trigger section, select the Condition and temperatures that will trigger this alarm:

Below Triggers an alarm when the temperature is below the specified *Threshold* value. Also type a *Hysteresis* value.

Above Triggers an alarm when the temperature is above the specified *Threshold* value. Also type a *Hysteresis* value.

Interval Triggers an alarm when the temperature is within the specified Min value and Max value.

Hysteresis is the interval within which the temperature value is allowed to vary without causing a change in the trigger. If the threshold is set above 30.0°C and the hysteresis is set at 2.0°C, the trigger goes high when the temperature rises above 30.0°C and stays high until the temperature drops below 28.0°C. In contrast, if the threshold is set below 30.0°C, and the same hysteresis value is kept, the trigger goes high if the temperature drops below 30.0°C and stays high until the temperature rises above 32.0°C.

4. In the *Threshold time* box, type the amount of time that has to pass before an alarm is triggered. This can be used to avoid false alarms.

5. In the *Action* section, select which actions the camera will perform when an alarm is triggered:

Digital OUT Outputs a digital pulse. Also, type a pulse length (in millisec-

onds) in the Pulse time box.

E-mail Automatically sends the captured Image, Result, or Video to the

recipients defined in Settings > Alarm recipients.

Send to FTP Automatically sends the captured Image or Video to the FTP

site defined in Settings > Alarm recipients.

Save to camera Automatically saves the captured Image or Video to the memo-

ry of the camera.

During alarm Temporarily disables the periodic calibration while the image/

video is being captured.

The image/video can later be viewed and managed under the *Library* tab:

- · the captured image frame that triggered the alarm,
- the 5 second video sequence when the alarm was triggered.
- 6. When completed, click Set alarm. The alarm is now listed under Active alarms.

12.4.2.2 Setting an alarm based on the digital input

To configure an alarm based on the digital input, follow this procedure:

- 1. In the *Active Measurements* section, click the plus sign under *Add alarm* next to the digital input result to be used for the alarm. The *Alarm* dialog box appears.
- 2. In the Alarm label section, type an Alarm name.
- 3. In the *Trigger* section and in the *Value* list; select "0" to trigger the alarm on a low signal or select "1" to trigger on a high signal.
- 4. In the *Action* section, select which actions the camera will perform when an alarm is triggered:

Digital OUT Outputs a digital pulse. Also, type a pulse length (in millisec-

onds) in the Pulse time box.

E-mail Automatically sends the captured Image, Result, or Video to the

recipients defined in Settings > Alarm recipients.

Send to FTP Automatically sends the captured Image or Video to the FTP

site defined in Settings > Alarm recipients.

Save to camera Automatically saves the captured Image or Video to the memo-

ry of the camera.

During alarm Temporarily disables the periodic calibration while the image/

video is being captured.

The image/video can later be viewed and managed under the *Library* tab:

- · the captured image frame that triggered the alarm,
- the 5 second video sequence when the alarm was triggered.
- 5. When completed, click Set alarm. The alarm is now listed under Active alarms.

12.4.2.3 Setting an alarm based on sensor temperature

The internal temperature sensor can act as a thermometer for the ambient temperature. To configure an alarm based on the internal temperature sensor, follow this procedure:

- 1. In the *Active Measurements* section, click the plus sign under *Add alarm* next to the *Sensor temperature*. The *Alarm* dialog box appears.
- 2. In the Alarm label section, type an Alarm name.

3. In the *Trigger* section, select the *Condition* and temperatures that will trigger this alarm:

Below Triggers an alarm when the temperature is below the specified *Thresh-*

old value. Also type a Hysteresis value.

ue and Max value.

Above Triggers an alarm when the temperature is above the specified Threshold value. Also type a Hysteresis value.

Interval Triggers an alarm when the temperature is within the specified Min val-

Hysteresis is the interval within which the temperature value is allowed to vary without causing a change in the trigger. If the threshold is set above 30.0°C and the hysteresis is set at 2.0°C, the trigger goes high when the temperature rises above 30.0°C and stays high until the temperature drops below 28.0°C. In contrast, if the threshold is set below 30.0°C, and the same hysteresis value is kept, the trigger goes high if the temperature drops below 30.0°C and stays high until the temperature rises above 32.0°C.

- 4. In the *Threshold time* box, type the amount of time that has to pass before an alarm is triggered. This can be used to avoid false alarms.
- 5. In the *Action* section, select which actions the camera will perform when an alarm is triggered:

Digital OUT Outputs a digital pulse. Also, type a pulse length (in millisec-

onds) in the Pulse time box.

E-mail Automatically sends the captured Image, Result, or Video to the

recipients defined in Settings > Alarm recipients.

Send to FTP Automatically sends the captured Image or Video to the FTP

site defined in Settings > Alarm recipients.

Save to camera Automatically saves the captured Image or Video to the memo-

ry of the camera.

During alarm Temporarily disables the periodic calibration while the image/

video is being captured.

The image/video can later be viewed and managed under the *Library* tab:

- the captured image frame that triggered the alarm.
- the 5 second video sequence when the alarm was triggered.
- 6. When completed, click Set alarm. The alarm is now listed under Active alarms.

12.4.3 Changing object parameters

For accurate measurements, the camera must be provided with certain object parameters:

Emissivity

How much radiation an object emits, compared with the radiation of a theoretical reference object at the same temperature (called a "blackbody"). The opposite of emissivity is reflectivity. The emissivity determines how much of the radiation originates from the object as opposed to being reflected by it.

Reflected temperature

This is used when compensating for the radiation from the surroundings reflected by the object into the camera. This property of the object is called reflectivity.

Distance

The distance between the camera and the object of interest.

Relative humidity

The relative humidity of the air between the camera and the object of interest.

- Atmospheric temperature
 The temperature of the air between the camera and the object of interest.
- External IR window

Used if any protective windows etc. are set up between the camera and the object of interest. When the setting is on, the following parameters can be set:

- Transmission: How much of the thermal radiation passes through the window.
- Temperature: The temperature of the window.

You can set the object parameters globally. You can also change the *Emissivity*, *Reflected temperature*, and *Distance* parameters locally for a measurement tool.

Note

- The local parameter settings override the global values.
- Of the object parameters, Emissivity and Reflected temperature are the two most important to set correctly in the camera.

12.4.3.1 Global parameters

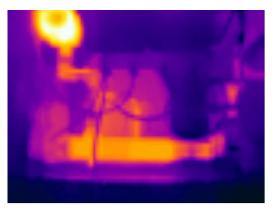
The global parameters are shown in the bottom right corner of the screen, below the *Active measurements* section.

To change the global parameters, follow this procedure:

- 1. In the bottom right corner of the screen, click to select the parameter to change.
- 2. Change the parameter to the desired value, and then press Enter or click anywhere on the screen.
- 3. To reset the global parameters to the default values provided by FLIR, click Reset.

12.4.3.2 Local parameters

The local parameter settings override the global values. To change the local parameters, follow this procedure:


- 1. In the *Active measurements* section, click *Settings* next to the tool for which you want to change the parameters. The *Settings* dialog box appears.
- To activate the use of local parameters, select the Local parameters check box. The values for the Emissivity, Reflected temperature, and Distance parameters are now editable.
- 3. To deactivate the use of local parameters, deselect the *Local parameters* check box.
- 4. When completed, click Save changes.

12.4.4 Working with image modes

The camera captures both thermal and visual images at the same time. By your choice of image mode, you select which type of image to display on the screen.

The camera supports the following image modes:

• Thermal: The camera displays a fully thermal image.

 MSX (Multi Spectral Dynamic Imaging): The camera displays the thermal image where details from the visual image have been added.

• Visual: The camera displays the visual image captured by the visual camera.

FSX (Flexible Scene Enhancement): The camera displays the thermal image with enhanced image details.

To select the image mode, follow this procedure:

- 1. On the toolbar and in the Data presentation modes section, click Image mode.
- 2. Select one of the available image modes.

12.4.5 Colorizing the image

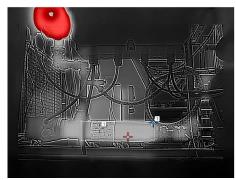
The camera can colorize the image in different ways. You can select different color palettes or apply color alarms (isotherms).

12.4.5.1 Palette

You can change the palette that the software uses to display the different temperatures within an image. A different palette can make it easier to analyze the image. The most suitable palette for a certain application depends on many different factors, such as the target temperature and emissivity, the ambient temperature, and the distance to the target. You will need to test different palettes in order to find the one that best suits your application.

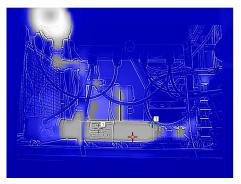
To change the palette, follow this procedure:

- 1. On the toolbar and in the Data presentation modes, click Palette.
- 2. Select one of the available palettes.

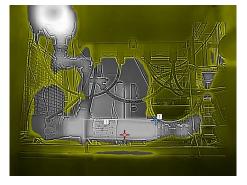

12.4.5.2 Isotherms

By using color alarms (isotherms), anomalies can easily be discovered in an infrared image. The isotherm command applies a contrasting color to all pixels with a temperature above, below, or between the set temperature levels.

The camera supports the following isotherms:


Above

Applies a contrasting color (red) to all pixels with a temperature above the specified temperature level.


Below

Applies a contrasting color (blue) to all pixels with a temperature below the specified temperature level.

Interval

Applies a contrasting color (yellow) to all pixels with a temperature between two specified temperature levels.

To configure an isotherm, follow this procedure:

- 1. On the toolbar and in the Data presentation modes section, click Isotherm.
- 2. Select one of the available isotherms.

- When a color alarm is selected, it is displayed in the Active measurements section.
 Also, a temperature indicator is added to the left side of the temperature scale located to the right of the image.
- 4. To change the threshold temperature, click *Settings* next to the isotherm in the *Active measurements* section. The *Settings* dialog box appears.
- 5. In the *Range* section, set the threshold temperature of the isotherm:
 - Above; type a threshold temperature in the From box.
 - Below; type a threshold temperature in the To box.
 - Interval; type the interval temperatures in the To and From boxes.
- 6. Optionally, change the contrasting color in the Highlight color section.
- 7. When completed, click Save changes.

12.4.6 Auto-adjust region

By using the *Auto-adjust region* feature it is possible to select an area of the image, and then have the colorization of the image adjusted based on the temperatures within that selected area.

To configure an auto-adjust region, follow this procedure:

- 1. On the toolbar and in the Data presentation modes section, click Auto-adjust region.
- 2. In the image, click and then draw a region of a desired size.
- 3. To move the region, click and hold the region label in the image, and then move it into position.
- 4. To resize the region, click and hold one of the corners of the region in the image, and then move it to the desired size and shape.
- 5. To remove the region, click *X* in the region label.

12.4.7 Calibrating the camera

The calibration of the camera is performed as a non-uniformity correction (NUC). A NUC is an image correction carried out by the camera software to compensate for different sensitivities of detector elements and other optical and geometrical disturbances¹.

Calibration is needed whenever the output image becomes spatially noisy. This may, for example, happen when the ambient temperature changes. The calibration can be carried out automatically with different selectable intervals. It is also possible to perform a calibration manually.

12.4.7.1 Automatic calibration

To set the automatic calibration, follow this procedure:

- 1. On the toolbar and in the *Calibration tools* section, click *Calibration*. This displays a list of calibration options.
- 2. Click one of the options:

Option	Calibration is automatically carried out:
Auto	when needed.
Every 10 min	approximately every 10 minutes.
Every 30 min	approximately every 30 minutes.
Every 60 min	approximately every 60 minutes.
Every [type your value]	at any set interval.
OFF	never (automatic calibration disabled).

Definition from the impending international adoption of DIN 54190-3 (Non-destructive testing—Thermographic testing—Part 3: Terms and definitions).

3. While the automatic calibration is in progress, the *Notification* text *Calibration in progress* ... is temporarily displayed under the live image.

12.4.7.2 Manual calibration

To perform a manual calibration, follow this procedure:

- 1. On the toolbar and in the *Calibration tools* section, click *Calibration*. This displays a list of calibration options.
- 2. Click Calibrate now.
- 3. While the manual calibration is in progress, the *Notification* text *Calibration in progress* ... is temporarily displayed under the image on the screen

12.4.8 Using the camera lamp

The camera is equipped with a lamp. To turn the lamp on or off, follow this procedure:

- 1. On the toolbar and in the Calibration tools section, click Light.
- 2. Click ON or OFF.

12.4.9 Adjusting the temperature scale

The camera continuously auto-adjusts the image for the best image brightness and contrast. In some situations, manual adjustments can make it easier to analyze details in the image. For example, by manually changing the maximum and/or minimum temperature levels to levels near a certain object in the image, you can study temperature variations in the object.

The temperature scale is located to the right of the live image. When a temperature level is manually adjusted, the *Auto* button is displayed next to the temperature scale box.

To manually adjust the image, follow this procedure:

- To change the maximum temperature level, type the temperature in the upper temperature scale box. As an alternative, click and hold the upper temperature bar on the scale, and then move it into position. Watch the temperature in the scale box change as you move the bar.
- 2. To change the **minimum** temperature level, type the temperature in the lower temperature scale box. As an alternative, click and hold the lower temperature bar on the scale, and then move it into position. Watch the temperature in the scale box change as you move the bar.
- 3. To return to auto-adjustment, click the *Auto* button(s).

12.4.10 Flipping the image

The image can be flipped horizontally or vertically.

Vertical flip

Horizontal + vertical flip

To change the flip setting, follow this procedure:

- 1. On the toolbar and in the View modes section:
 - click to flip the image horizontally,
 - click to flip the image vertically.

12.4.11 Full screen view

To view the image in full screen, follow this procedure:

- 1. On the toolbar and in the View modes section, click Full screen.
- 2. To return to normal view, press the Esc (Escape) key on the computer keyboard.

12.4.12 Saving a snapshot

It is possible to take a snapshot and save the image with the current measurement results. The image can later be viewed and managed on the *Library* tab. Up to 100 images can be saved.

To take a snapshot, follow this procedure:

- 1. On the toolbar and in the *View modes* section, click *Snapshot*.
- 2. The Notification text Snapshot stored is temporarily displayed under the live image.

12.4.13 Pausing the live image stream

To pause or freeze the live image stream, follow this procedure:

- 1. On the toolbar and in the View modes section, click Freeze.
- 2. To resume the live image stream, click *Unfreeze*.

12.4.14 Hiding the overlay graphics

To hide all overlay graphics in the live image, follow this procedure:

- 1. On the toolbar and in the View modes section, click Hide overlay.
- 2. To show any hidden overlay graphics, click Show overlay.

12.4.15 Camera presets

It is possible to save the current camera setup, including measurement tool configurations, alarms, and colorization settings. The zipped file with the presets is saved to disk in your Downloads folder. It can later on be uploaded and applied.

12.4.15.1 Saving a preset

To save the current camera setup, follow this procedure:

1. In the Active measurements section, click Save preset.

12.4.15.2 Loading a preset

To load a saved preset file, follow this procedure:

- 1. In the *Active measurements* section, click *Load preset*. The standard Windows Open dialog box appears.
- 2. Browse to the Downloads folder (or to the folder where you have stored the preset files).
- 3. Select the file, and then click Open. This loads and applies the presets.

12.5 Administration tab

Note The *Administration* tab is only available for the *admin* role.

Under the Administration tab you can manage:

- Firewall
- SSL certificates
- Services
- · Web protocols
- · User management
- · Regional settings
- Network settings
- · System and firmware

12.5.1 Firewall

Use the settings on the *Firewall* page to configure how the functions and services of the camera are allowed to be accessed.

Note The services also need to be enabled which is done on the *Services* page.

12.5.2 SSL certificates

A network client program that is setup to communicate with or control the camera remotely must be approved first, which is done on the *SSL certificates* page. The client uploads a certificate which is then shown in the *Certificates* list, and then the camera administrator can approve the client. Approved clients can be revoked later on.

Temporarily enable the *Auto approve* functionality while setting up the network clients. However, it is recommended to disable *Auto approve* when all setup is completed.

12.5.3 Services

Use the Services page to enable and disable the services of the camera.

Note The services also need to be allowed to be accessed which is done on the *Firewall* page.

12.5.4 Web protocols

Use the *Web protocols* page to configure which web protocol to use when accessing the camera; *http* or *https*.

12.5.5 User management

Use the *User management* page to enable and disable user roles, and to change passwords.

Note The *viewer* and *user* roles are disabled by default.

12.5.6 Regional settings

Use the Regional settings page to set Date and time and preferred Units.

Date and time can be set in four ways:

- Get date and time from an SNTP Server (Simple Network Time Protocol): Select the Enable check box, and then type the IP address of the SNTP Server in the Server address box.
- 2. Set date and time manually:

Select the correct *Time zone* in the list, and then type date and time information in the *Year, Month, Day, Hour, Minute*, and *Second* boxes.

3. Get date and time from your internet browser: Click *Read from browser*.

4. Get date and time from your camera: Click *Read from camera*.

Available Units are:

- Celsius (C) and Fahrenheit (F)
- Meter (m) and Foot (ft)

12.5.7 Network settings

Use the *Network settings* page to manage the network setup and to select the streaming bit rate.

Note When altering the network settings, the address of the camera might change. Make sure your settings are correct before saving them or the camera might not be reachable afterwards. If this occurs, you can use FLIR IP Config to locate the camera again or reset the camera to its default settings.

12.5.7.1 Ethernet setup

Follow this procedure:

- 1. In the navigation pane, click Network settings.
- 2. Select one of the following:
 - To automatically obtain an IP address for the camera, click Obtain IP address automatically (DHCP).
 - To manually set an IP address for the camera, click Manual configuration, and then type valid network information in the IP, Subnet mask, and Gateway boxes.
- 3. Click Apply.

12.5.7.2 Wireless

The Wireless connection can be set to Off, Server mode, or Client mode.

In Server mode, you configure the camera itself to act as a wireless server allowing other devices to connect, such as mobile phones or tablets. This is useful in situations where no other network exists. In Client mode you connect the camera to an existing network.

To let the camera act as a wireless server, follow this procedure:

- 1. In the navigation pane, click Network settings.
- 2. Click Server mode.
- 3. Type a Network name and a Password for accessing the network.
- 4. Click Share network.

The camera will now act as a "hotspot" that computers or tablets (with high resolution) can connect to. When a wireless connection has been established, the camera will be available at the IP address 192.168.16.1.

To connect the camera to an existing network, follow this procedure:

- 1. In the navigation pane, click Network settings.
- 2. Click Client mode.
- 3. Click Scan networks.
- 4. Select one of the Available networks in the list, and then click Connect.
- 5. Type the Password for accessing the network, and then click Connect.

12.5.7.3 Streaming bit rate

Follow this procedure:

- 1. In the navigation pane, click Network settings.
- 2. In the Streaming bit rate list, select one of the available bit rates.
- 3. Click Apply.

12.5.8 System and firmware

The System and firmware page displays System version, Software details, and Hardware details of the camera. In the System section, you can restart the camera, reset the camera to factory settings, or upgrade the camera firmware.

12.5.8.1 Restart camera

Follow this procedure:

- 1. In the navigation pane, click System and firmware.
- 2. In the System section, click Restart camera. This displays a dialog box.
- 3. In the dialog box, click OK. The camera will restart.

12.5.8.2 Reset camera to factory settings

A factory reset will affect all camera settings, including regional settings. Saved images will not be affected.

Follow this procedure:

- 1. In the navigation pane, click System and firmware.
- 2. In the System section, click Reset to factory settings. This displays a dialog box.
- 3. In the dialog box, click OK. The camera will restart.

12.5.8.3 Upgrade camera firmware

Follow this procedure:

- 1. In the navigation pane, click System and firmware.
- 2. In the *System* section, click *Upgrade firmware*. This displays a dialog box.
- 3. Click Select file. The standard Windows Open dialog box appears.
- 4. Browse to the location of the firmware file, select the file, and then click *Open*.
- 5. Click Upgrade firmware.
- 6. When the upgrade is completed, restart the camera.

12.6 Settings tab

Note The *Settings* tab is only available for the *admin* and *user* roles.

Under the Settings tab you can manage:

- · General settings
- Alarm recipients
- Scheduler
- MQTT
- Modbus
- Screening

12.6.1 General settings

The General settings page displays Product information, Camera ID, IP6x settings, and the possibility to Test Digital Input/Output functionality.

12.6.1.1 Camera ID

Type the preferred camera ID in the *Device label* box. Select the *Display in status bar* check box to show the camera ID on the active tab of the web browser and in the upper part of saved images.

12.6.1.2 IP6x settings

Use the *IP6x settings* if your camera is IP66 rated. This can be the case when the camera is delivered in an environmental housing or a pan & tilt, or if an IP hood has been attached to the camera.

• Enable IP6x

When this setting is enabled, the two LED lamps at the front of the camera are disabled.

Disable manual focus ring

When this setting is enabled, it is impossible to use the manual focus ring of the camera. This is to prevent focus from changing due to, e.g., shock or vibrations.

External compensation

When this setting is enabled, compensation for the extra window (of the environmental housing, pan & tilt, or IP hood) in front of the infrared lens will be made. If needed, also change the *External temperature*.

12.6.1.3 Test Digital Input/Output

Use the test buttons to the test the electrical interfaces of the camera and the communication with them. These tests are useful when you set up the interfaces.

Click Test (5s). A successful test is indicated by a green "dot" for 5 seconds.

12.6.2 Alarm recipients

Use the *Alarm recipients* page to configure alarm notifications. Notifications can be sent by e-mail or to a folder on an FTP server.

To configure delivery by e-mail, follow this procedure:

- 1. In the navigation pane, click Alarm recipients.
- 2. In the Alarm recipient e-mail box, type the e-mail address of the recipient.
- 3. In the Mail server setup box, type the IP address of the sending mail server.
- If the sending mail server requires a login (mail server authentication), select the Authentication required check box, and then type the credentials in the User and Password boxes.
- Click Apply.

To configure delivery to FTP, follow this procedure:

- 1. In the navigation pane, click Alarm recipients.
- 2. In the FTP Server IP address box, type the IP address of the FTP server.
- 3. In the *Folder* box, type the path to the folder where you want to save the notifications. This can be useful if you have multiple cameras connected to the same FTP server.
- 4. In the *User* and *Password* boxes, type the credentials for FTP access.
- 5. Click Apply.

12.6.3 Scheduler

Use the *Scheduler* page to configure what actions to run, and when to run them. The result of an action can be sent by e-mail or to a folder on an FTP server.

Available actions are:

- E-mail image
 Send the image with overlay graphics.
- E-mail result
 Send a list of the active measurements and their respective temperatures.
- Save image on FTP
 Send the image with overlay graphics to an FTP server.

To schedule actions, follow this procedure:

1. In the navigation pane, click Scheduler.

- 2. Click the check boxes to select which Scheduled actions to use.
- 3. In the schedule, click the Active check box for the days that the action will run:
 - To run the action once a day at a certain time, also click Once and then set an Action Time
 - To run the action several times a day, also click Repeat and then set a time Interval, a Start action time, and an End action time.
- 4. Click Apply.

To configure delivery to FTP, follow this procedure:

- 1. In the FTP Server box, type the IP address of the FTP server.
- 2. In the FTP User and FTP Password boxes, type the credentials for the FTP access.
- 3. Click Apply.

To configure delivery by e-mail, follow this procedure:

- 1. In the Recipient e-mail box, type the e-mail address of the recipient.
- 2. In the Mail server box, type the IP address of the sending mail server.
- 3. In the Sender e-mail box, type the e-mail address of the sender.
- If the sending mail server requires a login (mail server authentication), select the Authenticate mail check box, and then type the credentials in the User and Password boxes.
- 5. Click Apply.

12.6.4 MQTT

It is possible to setup a publish/subscribe messaging transport using the MQTT protocol (MQ Telemetry Transport). Topics that are available for subscription are shown in the *Topic subscriptions* section. Note that the corresponding measurement functions and alarms must be defined and active, or no information will be published.

Follow this procedure:

- 1. In the navigation pane, click MQTT.
- 2. Click the Enable MQTT check box.
- 3. Type the *Broker host address* and the *TCP Broker Port* used for the subscription transport.
- 4. Type the *User* and *Password* to login to the broker.
- 5. Select preferred *Temperature unit* in the list; *Celsius (C)*, *Fahrenheit (F)*, or *Kelvin (K)*.
- 6. Select preferred Output format in the list; Json or Text.
- 7. Click Apply.
- 8. In your MQTT client of choice, set up a subscription for the topic corresponding to the information of interest. The topics will be updated when the data is updated, for example; if you subscribe to the topic FLIR/ec501-xxxxxx/alarm1, your MQTT client will receive an update when alarm1 is triggered and then another update when alarm1 criteria are no longer fulfilled. You can connect multiple cameras to the same MQTT broker.

12.6.5 Modbus

Use the *Modbus* page to configure remote transport of alarms and measurements.

12.6.5.1 Digital out

The camera has two digital outputs which can be used for remote transport of alarms. By using a Modbus controlled digital out box installed on the network it is possible to get another 10 "soft" digital outputs. In this setup the camera will act as Modbus master controlling the digital out box acting as Modbus slave.

To configure a digital out, follow this procedure:

- 1. In the navigation pane, click *Modbus*.
- 2. In the Digital out list, click Configure for the digital out number you want to use.
- 3. In the *Digital output entry* dialog box, type a *Name* of the entry. Also, type the *IPAddress*, *Device function ID*, and Modbus *Register address* specific to the equipment.

- 4. Select Type specific to the equipment.
- 5. Click Apply.
- 6. To test the Modbus output, click Test which will activate the output for 5 seconds.
- 7. The digital out is now selectable in the *Digital Out* list when setting up alarms, see section 12.4.2 *Working with alarms*, page 22.

12.6.5.2 Analogue out

The camera has no analogue outputs, but by using the built-in Modbus master functionality and an analogue out box controlled over Modbus, 10 individual analogue outputs become available. By selecting the corresponding analogue output box, volt or ampere representation of a measured value is possible.

To configure an analogue out, follow this procedure:

- 1. In the navigation pane, click *Modbus*.
- 2. In the Analogue out list, click Configure for the analogue out number you want to use.
- 3. In the Analogue output entry dialog box, type a Name of the entry.
- 4. Type the following information:
 - 4.1. Select which *Measurement function* and *Update interval (ms)* to use. The *Update interval (ms)* defines how often a new value is sent over Modbus to the external analogue output box.
 - 4.2. Type the *IP Address*, *Device function ID*, and Modbus *Register address* specific to the equipment.
 - 4.3. Select *Type* specific to the equipment.
 - 4.4. Type the *Minimum temperature* and the *Maximum temperature* to be represented.
 - 4.5. In the *Data output at Minimum temperature* and *Data output at Maximum temperature* boxes, type the digital values to be sent over Modbus representing the *Minimum temperature* and *Maximum temperature*, respectively.

Note The data output depends on the analogue box being used. If the box supports an analogue output of 0 to 20 mA with the resolution 12-bit, the minimum data output will be 0 and the maximum will be 4095.

- 5. Click Apply.
- 6. To test the Modbus output, click *Test* which will activate the output for 5 seconds.

12.6.6 Screening

In *Screening* mode, the system measures the temperature of the hottest spot within a measurement box. An alarm will trigger if the measured temperature is higher than the sum of a reference temperature average and an allowed deviation. The reference temperature average is calculated based on measurement samples captured by the operator. The allowed deviation (offset) can be specified by a setting.

Use the switch to enable the *Screening* mode. When the camera is in *Screening* mode, the *Camera* tab is replaced with a *Screening* tab in the camera web interface.

Capturing section

- The Interval value specifies how often the system shall stop the screening and require
 the operator to capture a new sample. To keep the sampled average up to date, new
 samples should be captured often. The operator can capture a sample at any time by
 clicking a button on the Screening tab. When a sample is captured, the timer defined
 by the Interval value is reset.
- The Screening offset value is used to calculate the alarm threshold. The threshold is the sum of the reference temperature average and the offset. Setting a low offset will detect smaller elevations in skin temperatures, but it will also generate more false positives. Setting a high offset will lead to fewer false positives, but also miss more people with elevated skin temperatures, as they might be naturally colder than the average or they might come from a colder environment. The default offset is 1.0°C/1.8 °F.

Image section

- The camera can colorize the image in different ways. In the Palette list, you can select different color palettes.
- The camera captures both thermal and visual images at the same time. By your
 choice of image mode, you select which type of image to display on the screen. In the
 Image mode list, you can select one of the following image modes:
 - Thermal: The camera displays a fully thermal image.
 - MSX (Multi Spectral Dynamic Imaging): The camera displays the thermal image where details from the visual image have been added.
 - Visual: The camera displays the visual image captured by the visual camera.
 - FSX (Flexible Scene Enhancement): The camera displays the thermal image with enhanced image details.

In the *Action* section, select which actions the camera will perform when a screening alarm is triggered:

Digital OUT Outputs a digital pulse. Also, type a pulse length (in milliseconds)

in the Pulse time box.

E-mail Automatically sends the captured Image, Result, or Video to the

recipients defined in Settings > Alarm recipients.

Send to FTP Automatically sends the captured Image or Video to the FTP site

defined in *Settings* > *Alarm recipients*.

Save to camera Automatically saves the captured Image or Video to the memory of

the camera.

During alarm Temporarily disables the periodic calibration or produces a sound

when an elevated temperature is detected.

When all Screening settings are completed, click Apply.

12.7 Library tab

Note The *Library* tab is only available for the *admin* and *user* roles.

Under the *Library* tab you can view and manage saved images and videos from alarms and snapshots. When downloading multiple images or videos, a pop-up window will appear. Make sure it is not blocked by your internet browser.

12.7.1 Managing images

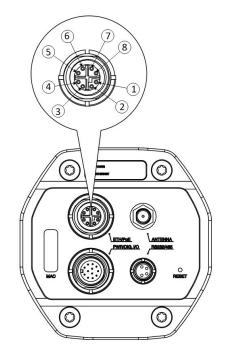
To view and manage image files, follow this procedure:

- 1. In the navigation pane, click Images.
- 2. To display a preview of an image, click the thumbnail of the image. As an alternative, click the image file name, and then click *Preview*.
- 3. To download an image, click the image file name, and then click *Download*.
- 4. To delete one or more images, click the image file name(s), and then click Delete.

12.7.2 Managing videos

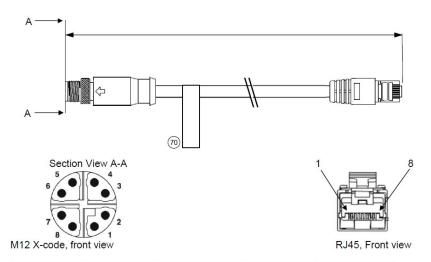
To manage video files, follow this procedure:

- 1. In the navigation pane, click Videos.
- 2. To download a video, click the video file name, and then click Download.
- 3. To delete one or more videos, click the video file name(s), and then click *Delete*.


12.7.3 Managing logs

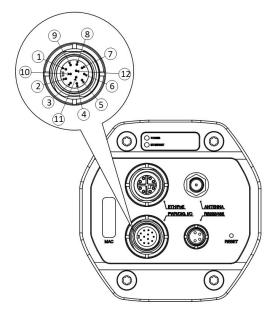
The alarms can be logged to file. To manage log files, follow this procedure:

- 1. In the navigation pane, click Logs.
- 2. To enable logging of alarms, click the Logging enabled check box.


- 3. To download the generated logs as a zipped file, click *Download log*.4. To delete the generated logs, click *Clean log*.

13.1 Ethernet connector and cable

Pin	Configuration
1	DA+
2	DA-
3	DB+
4	DB-
5	DD+
6	DD-
7	DC-
8	DC+


Figure 13.1 Female X-coded M12 Ethernet connector

Wiring Diagram				
M12 X-code		Wire colour		RJ45
1	1	Orange/White	1//	1
2	XX	Orange	XX	2
3	1	Green/white	1	3
4	XX	Green	XX	6
5		Brown/White	1	7
6	XX	Brown	XX	8
7	1	Blue/White	1	5
8	XX	Blue	XX	4
SHIELD		Drain Wire		SHIELD

Figure 13.2 Ethernet cable M12 to RJ45

13.2 Power/Digital I/O connector and cable

Pin	Configuration
1	EXTPWR_RTN
2	EXTPWR_IN
3	FAULT_A
4	FAULT_B
5	DIGOUT1A
6	DIGOUT1B
7	DIGOUT2A
8	DIGOUT2B
9	DIGIN1
10	DIGIN2
11	Not Connected
12	DIGIN_RTN

Figure 13.3 Male A-coded M12 Power/Digital I/O connector

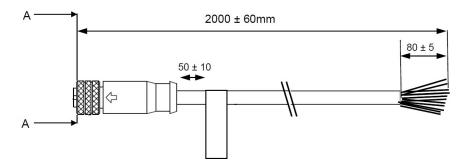


Figure 13.4 Cable M12 to pigtail

Section A—A	Wire colour
1	Black
2	Red
3	Green
4	Purple
5	Yellow
6	Pink
7	Orange
8	Brown
9	White
10	Grey
11	Light blue
12	Blue

A-series connection board

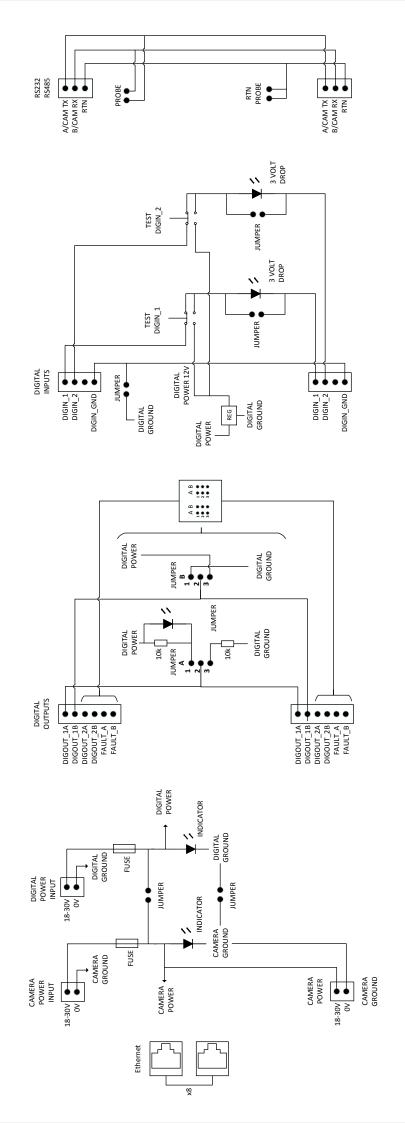
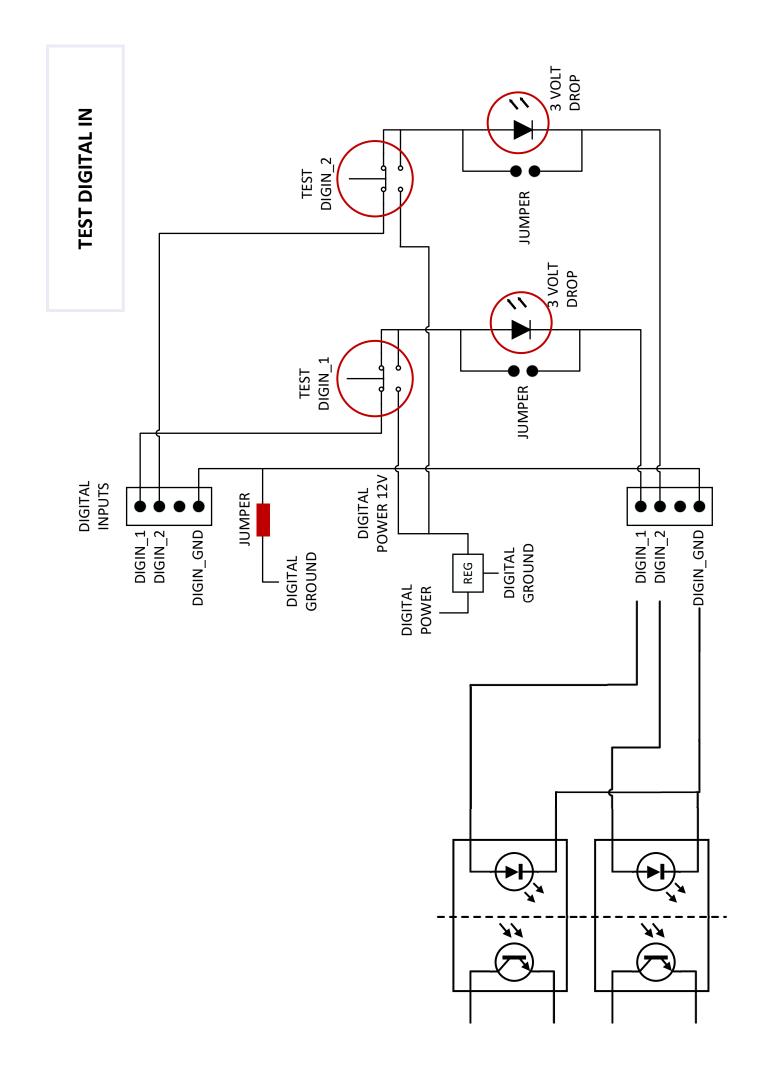
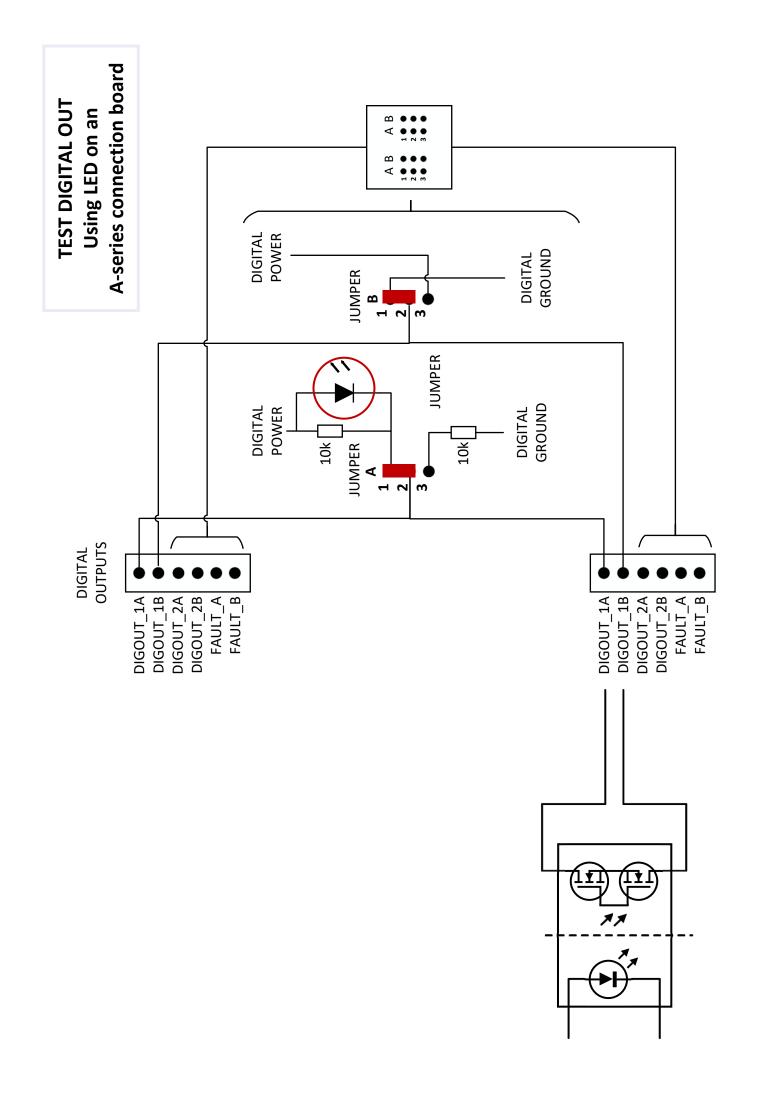
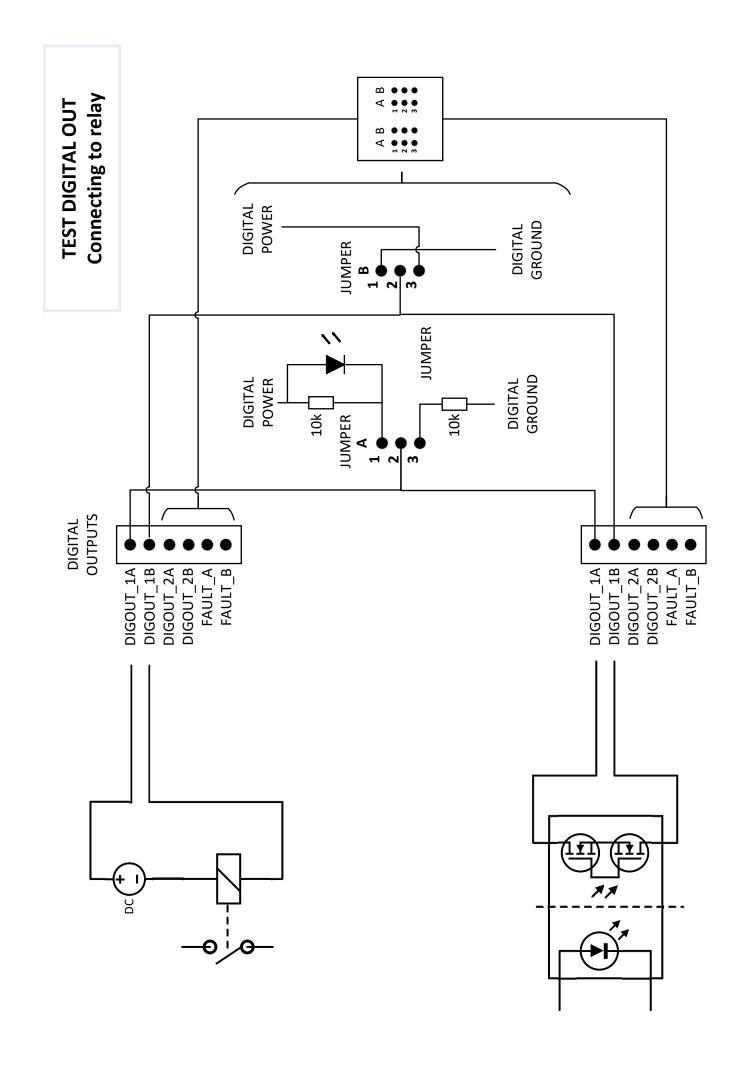

The A-series connection board is an accessory that can be used to test functionality and digital connections to/from the camera.

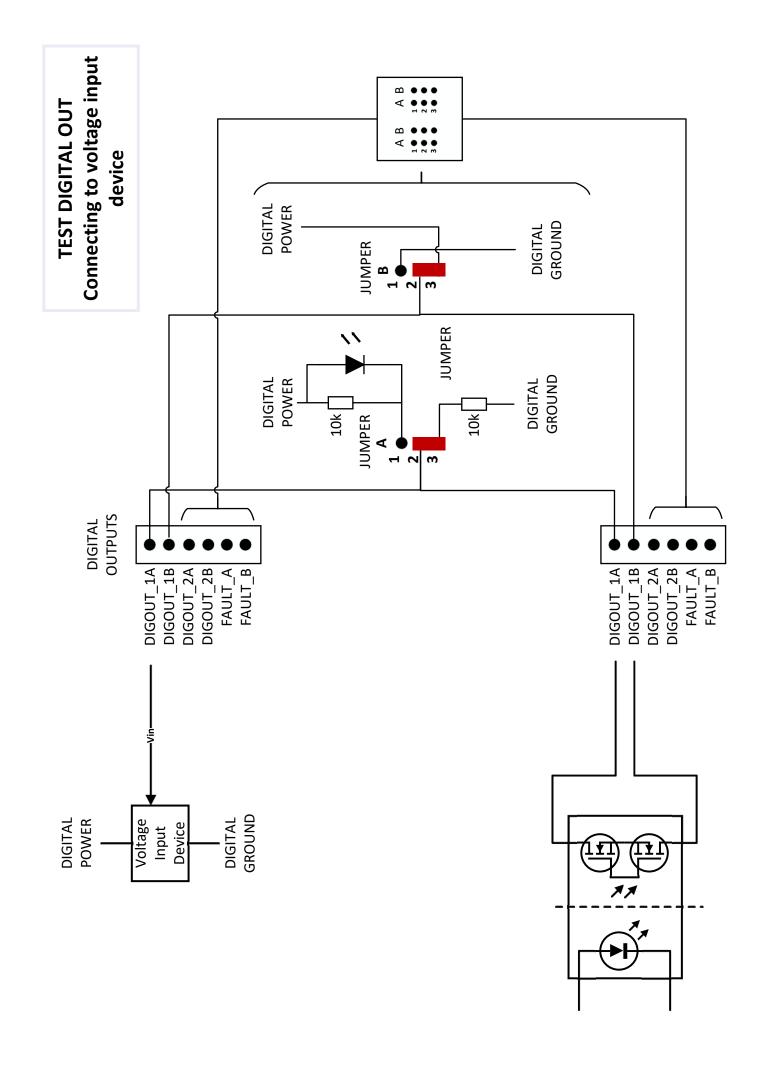
Figure 14.1 A-series connection board

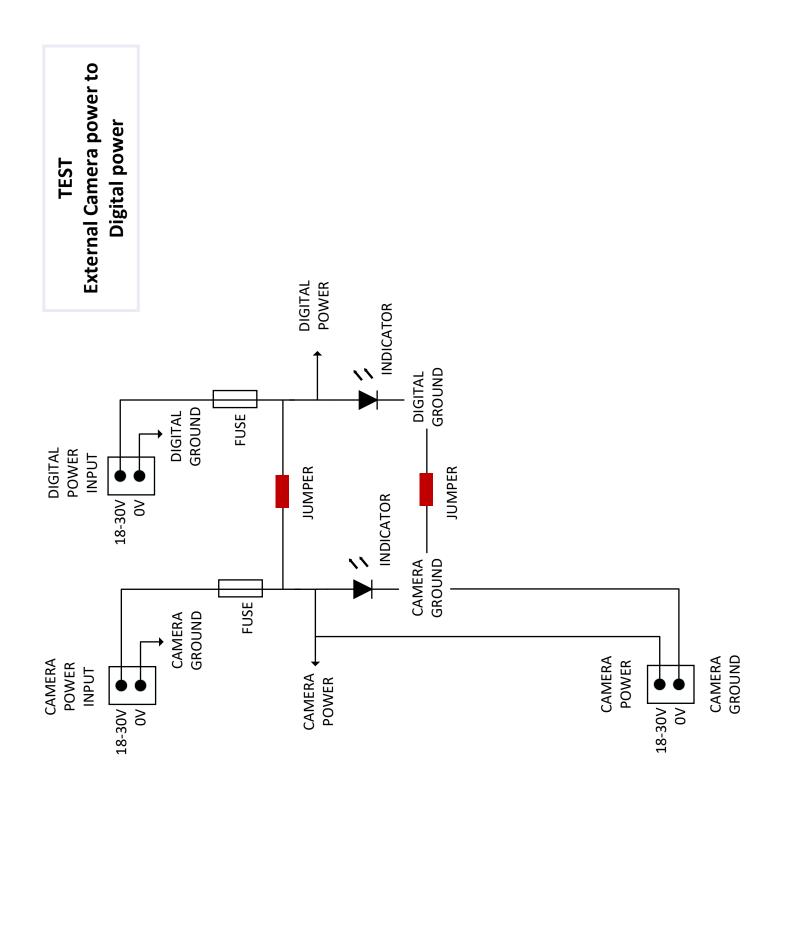
For schematics and connection examples, see the next pages.

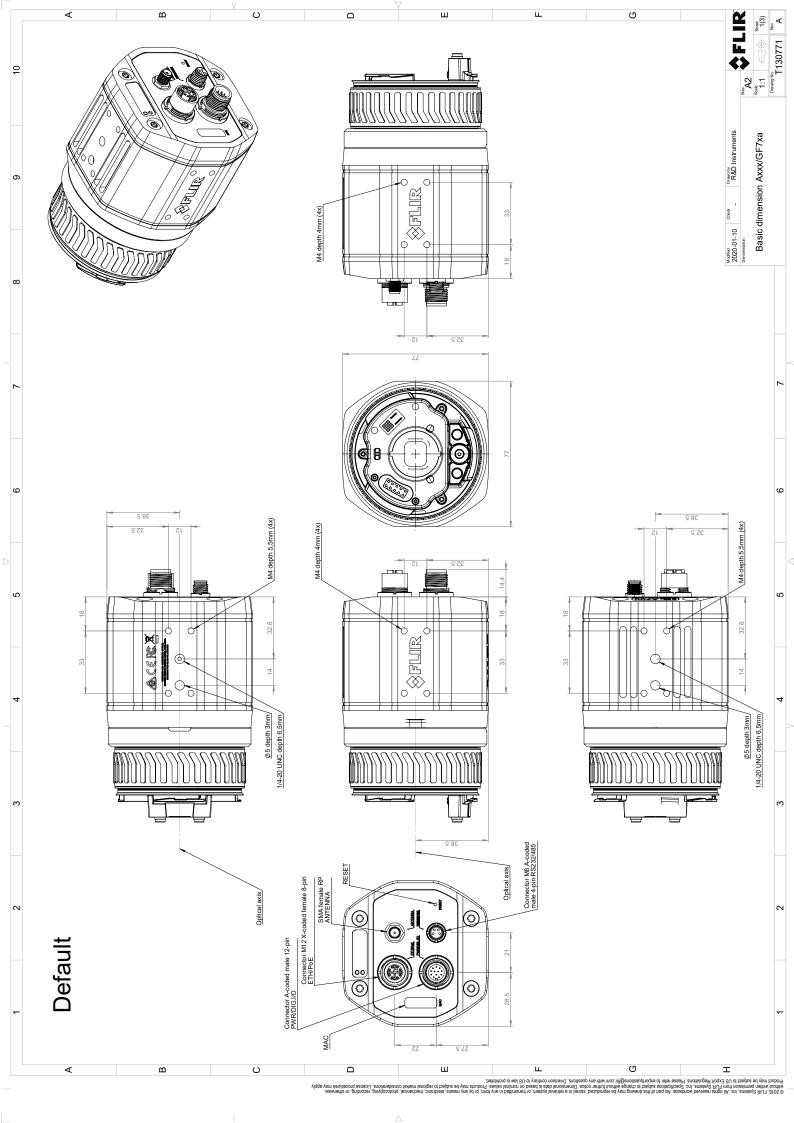

Installation side

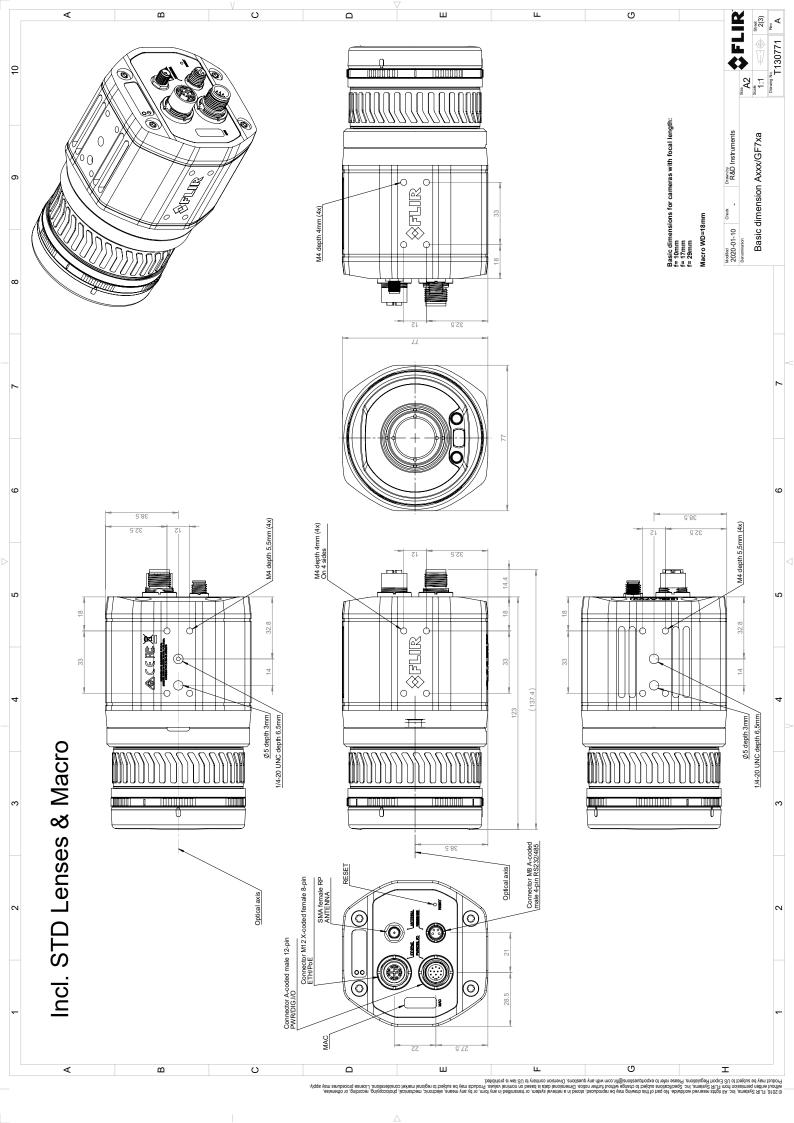


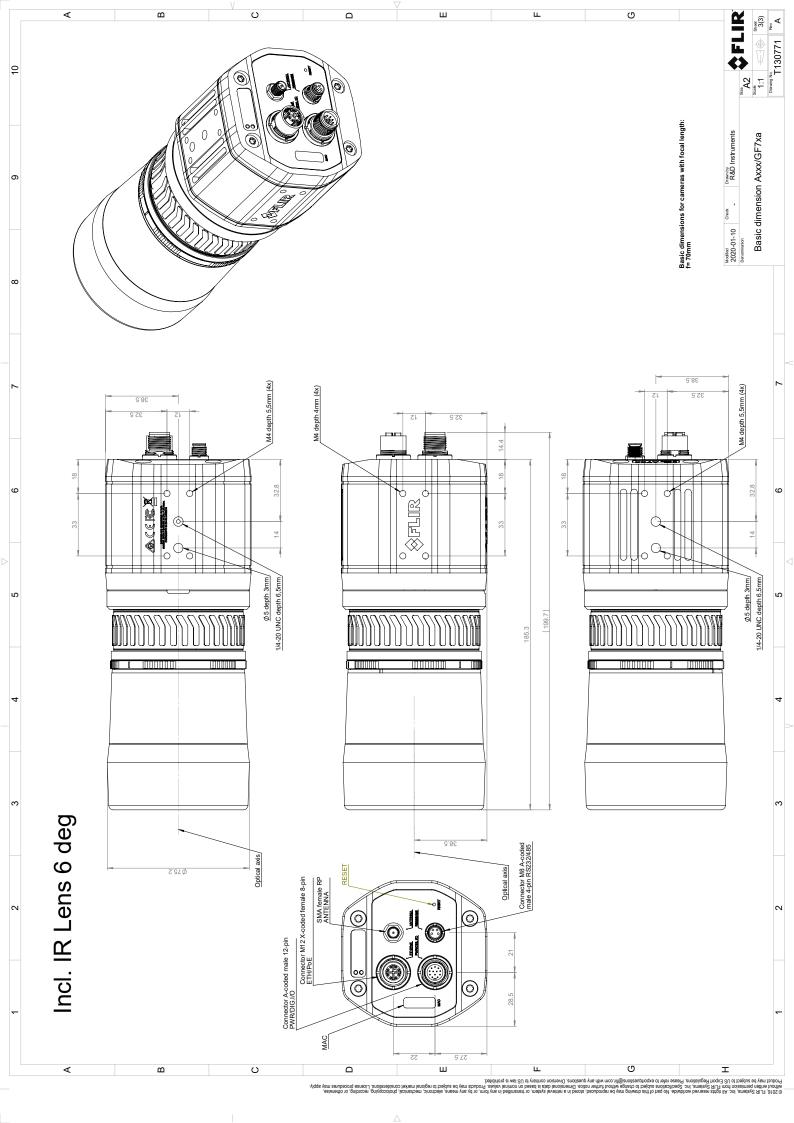

Camera side


14.1 Connection examples


(See next page)


Software supporting FLIR A500– EST/FLIR A700–EST cameras


Software	Support	Comment
FLIR IP Config Note Use FLIR IP Config version 3 or higher.	Yes	Detecting A-series cameras on the network. Assigning IP addresses. Accessing the built-in camera web interface.
Camera web interface	Yes	Camera configuration
FLIR Screen EST	Yes	PC-based application for detection of elevated skin temperatures using thermal cameras.
FLIR Tools/Tools+	No	_
FLIR IR Monitor	No	_
EthernetIP & Modbus TCP	Yes	Connecting to a PLC for readout of analysis and alarms.
FLIR Spinnaker SDK	Yes	
FLIR Spinnaker GEV Demo	Yes	
Pleora Ebus SDK	No	_
FLIR GEV Demo	No	_


16

Mechanical drawings

(See next page)

17

EU Declaration of conformity

[See next page]

June 22, 2020 Täby, Sweden AQ320379

CE Declaration of Conformity - EU Declaration of Conformity

Product: FLIR A4XX-, A5XX, A7XX-series and GF7Xa

Name and address of the manufacturer:

FLIR Systems AB PO Box 7376

SE-187 15 Täby, Sweden

This declaration of conformity is issued under the sole responsibility of the manufacturer.

The object of the declaration: FLIR A4XX-, A5XX, A7XX-series and GF7Xa (Product Model Name FLIR-A8590).

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

Directives:

Directive	2012/19/EU	Waste electrical and electric equipment
Directive	2011/65/EU	RoHS and 2015/830/EU (Phtalates)
Directive	2014/53/EU	Radio Equipment Directive (RED)

Standards:

Emission:	EN 55032:2015	Electromagnetic compability multimedia
Immunity:	EN 55035:2017	Electromagnetic Compability Multimedia

ETSI EN 301489-1 v2.2.1 ERM – EMC for radio equipment ETSI EN 301489-17 v3.2.0 ERM – EMC Wideband data

Radio: ETSI EN 300 328 v2.1.1 Harmonized EN covering essential

requirements of the R&TTE Directive

ETSI EN 301 893 v.2.1.1 5GHz WLAN

Safety: IEC 62368-1:2014 (2nd Edition) + Cor.1:2015 + Cor.2: 2015 and EN62368-1:2014

+ AC: 2015 + A11: 2017 + AC: 2017 Video, information and communication tech

RoHS EN 50581:2012 Technical documentation

FLIR Systems ABQuality Assurance

Lea Dabiri

Quality Manager

Indicator LEDs and factory reset button

For location of the indicator LEDs and the factory reset button, see Figure 7.1 *View from the rear*, page 9.

18.1 Power/error indicator LED and factory reset button

Note Do not hold down the factory reset button when connecting the camera to power.

Factory reset button depression time period	Indicator LED status	Explanation
> 1 second	A continuous red light	When the factory reset button is released: A factory reset is executed. The main camera application is restarted. The indicator LED status resumes the status it had before the button was depressed.
> 4 seconds	A flashing red light	When the factory reset button is released: A factory reset is executed. The main camera application is restarted. The camera's IP settings are reset to the factory defaults (DHCP assigned). The indicator LED status resumes the status it had before the button was depressed.
> 10 seconds	A rapidly flashing red light	When the factory reset button is released: A factory reset is executed. The camera's IP settings are reset to the factory defaults (DHCP assigned). All added users are deleted. All passwords are deleted. The camera is restarted.

18.2 Power/error indicator LED and power modes

Indicator LED status	Explanation
A flashing blue light.	Normal operation.

18.3 Ethernet communication indicator LED

Indicator LED status	Explanation
A flashing green light	The camera is connected to a network and the network activity is indicated.
No light (i.e., it is switched off).	The camera is not connected to any network.

Cleaning the camera

19.1 Camera housing, cables, and other items

19.1.1 Liquids

Use one of these liquids:

- · Warm water
- · A weak detergent solution

19.1.2 Equipment

A soft cloth

19.1.3 Procedure

Follow this procedure:

- 1. Soak the cloth in the liquid.
- 2. Twist the cloth to remove excess liquid.
- 3. Clean the part with the cloth.

CAUTION

Do not apply solvents or similar liquids to the camera, the cables, or other items. This can cause damage.

19.2 Infrared lens

19.2.1 Liquids

Use one of these liquids:

- A commercial lens cleaning liquid with more than 30% isopropyl alcohol.
- 96% ethyl alcohol (C₂H₅OH).

19.2.2 Equipment

Cotton wool

CAUTION

If you use a lens cleaning cloth it must be dry. Do not use a lens cleaning cloth with the liquids that are given in section 19.2.1 above. These liquids can cause material on the lens cleaning cloth to become loose. This material can have an unwanted effect on the surface of the lens.

19.2.3 Procedure

Follow this procedure:

- 1. Soak the cotton wool in the liquid.
- 2. Twist the cotton wool to remove excess liquid.
- 3. Clean the lens one time only and discard the cotton wool.

WARNING

Make sure that you read all applicable MSDS (Material Safety Data Sheets) and warning labels on containers before you use a liquid: the liquids can be dangerous.

CAUTION

- Be careful when you clean the infrared lens. The lens has a delicate anti-reflective coating.
- Do not clean the infrared lens too vigorously. This can damage the anti-reflective coating.

About FLIR Systems

FLIR Systems was established in 1978 to pioneer the development of high-performance infrared imaging systems, and is the world leader in the design, manufacture, and marketing of thermal imaging systems for a wide variety of commercial, industrial, and government applications. Today, FLIR Systems embraces five major companies with outstanding achievements in infrared technology since 1958—the Swedish AGEMA Infrared Systems (formerly AGA Infrared Systems), the three United States companies Indigo Systems, FSI, and Inframetrics, and the French company Cedip.

Since 2007, FLIR Systems has acquired several companies with world-leading expertise:

- NEOS (2019)
- Endeavor Robotics (2019)
- Aeryon Labs (2019)
- Seapilot (2018)
- Acyclica (2018)
- Prox Dynamics (2016)
- Point Grey Research (2016)
- DVTEL (2015)
- · DigitalOptics micro-optics business (2013)
- MARSS (2013)
- Traficon (2012)
- Aerius Photonics (2011)
- TackTick Marine Digital Instruments (2011)
- ICx Technologies (2010)
- Raymarine (2010)
- Directed Perception (2009)
- OmniTech Partners (2009)
- Salvador Imaging (2009)
- Ifara Tecnologías (2008)
- Extech Instruments (2007)

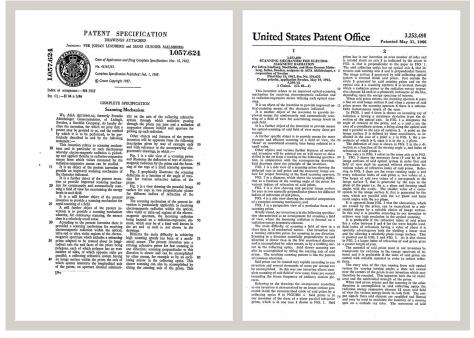
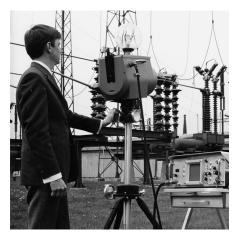



Figure 20.1 Patent documents from the early 1960s

FLIR Systems has three manufacturing plants in the United States (Portland, OR, Boston, MA, Santa Barbara, CA) and one in Sweden (Stockholm). Since 2007 there is also a manufacturing plant in Tallinn, Estonia. Direct sales offices in Belgium, Brazil, China,

France, Germany, Great Britain, Hong Kong, Italy, Japan, Korea, Sweden, and the USA—together with a worldwide network of agents and distributors—support our international customer base.

FLIR Systems is at the forefront of innovation in the infrared camera industry. We anticipate market demand by constantly improving our existing cameras and developing new ones. The company has set milestones in product design and development such as the introduction of the first battery-operated portable camera for industrial inspections, and the first uncooled infrared camera, to mention just two innovations.

1969: Thermovision Model 661. The camera weighed approximately 25 kg (55 lb.), the oscilloscope 20 kg (44 lb.), and the tripod 15 kg (33 lb.). The operator also needed a 220 VAC generator set, and a 10 L (2.6 US gallon) jar with liquid nitrogen. To the left of the oscilloscope the Polaroid attachment (6 kg (13 lb.)) can be seen.

2015: FLIR One, an accessory to iPhone and Android mobile phones. Weight: 36 g (1.3 oz.).

FLIR Systems manufactures all vital mechanical and electronic components of the camera systems itself. From detector design and manufacturing, to lenses and system electronics, to final testing and calibration, all production steps are carried out and supervised by our own engineers. The in-depth expertise of these infrared specialists ensures the accuracy and reliability of all vital components that are assembled into your infrared camera.

20.1 More than just an infrared camera

At FLIR Systems we recognize that our job is to go beyond just producing the best infrared camera systems. We are committed to enabling all users of our infrared camera systems to work more productively by providing them with the most powerful camera—software combination. Especially tailored software for predictive maintenance, R & D, and process monitoring is developed in-house. Most software is available in a wide variety of languages.

We support all our infrared cameras with a wide variety of accessories to adapt your equipment to the most demanding infrared applications.

20.2 Sharing our knowledge

Although our cameras are designed to be very user-friendly, there is a lot more to thermography than just knowing how to handle a camera. Therefore, FLIR Systems has founded the Infrared Training Center (ITC), a separate business unit, that provides certified training courses. Attending one of the ITC courses will give you a truly hands-on learning experience. The staff of the ITC are also there to provide you with any application support you may need in putting infrared theory into practice.

20.3 Supporting our customers

FLIR Systems operates a worldwide service network to keep your camera running at all times. If you discover a problem with your camera, local service centers have all the equipment and expertise to solve it within the shortest possible time. Therefore, there is no need to send your camera to the other side of the world or to talk to someone who does not speak your language.

Website http://www.flir.com

Customer support http://support.flir.com

Copyright

© 2020, FLIR Systems, Inc. All rights reserved worldwide.

DisclaimerSpecifications subject to change without further notice. Models and accessories subject to regional market considerations. License procedures may apply. Products described herein may be subject to US Export Regulations. Please refer to exportquestions@flir.com with any questions.

Publ. No.: T810567 Release: Commit: AA 69908 Head: 69908 Language: en-US Modified: 2020-09-02 Formatted: 2020-09-02